STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris.

نویسندگان

  • Million Tadege
  • Hao Lin
  • Mohamed Bedair
  • Ana Berbel
  • Jiangqi Wen
  • Clemencia M Rojas
  • Lifang Niu
  • Yuhong Tang
  • Lloyd Sumner
  • Pascal Ratet
  • Neil A McHale
  • Francisco Madueño
  • Kirankumar S Mysore
چکیده

Dicot leaf primordia initiate at the flanks of the shoot apical meristem and extend laterally by cell division and cell expansion to form the flat lamina, but the molecular mechanism of lamina outgrowth remains unclear. Here, we report the identification of STENOFOLIA (STF), a WUSCHEL-like homeobox transcriptional regulator, in Medicago truncatula, which is required for blade outgrowth and leaf vascular patterning. STF belongs to the MAEWEST clade and its inactivation by the transposable element of Nicotiana tabacum cell type1 (Tnt1) retrotransposon insertion leads to abortion of blade expansion in the mediolateral axis and disruption of vein patterning. We also show that the classical lam1 mutant of Nicotiana sylvestris, which is blocked in lamina formation and stem elongation, is caused by deletion of the STF ortholog. STF is expressed at the adaxial-abaxial boundary layer of leaf primordia and governs organization and outgrowth of lamina, conferring morphogenetic competence. STF does not affect formation of lateral leaflets but is critical to their ability to generate a leaf blade. Our data suggest that STF functions by modulating phytohormone homeostasis and crosstalk directly linked to sugar metabolism, highlighting the importance of coordinating metabolic and developmental signals for leaf elaboration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tnt1 retrotransposon tagging of STF in Medicago truncatula reveals tight coordination of metabolic, hormonal and developmental signals during leaf morphogenesis

Tnt1 (transposable element if Nicotiana tabaccum cell type 1) is one of the very few active LTR retrotransposons used for gene tagging in plants. In the model legume Medicago truncatula, Tnt1 has been effectively used as a gene knock-out tool to generate several very useful mutants. stenofolia (stf) is such a mutant identified by Tnt1 insertion in a WUSCHEL-like homeobox transcription factor. S...

متن کامل

The tonoplast--where sweetness is dispensable.

is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. The ...

متن کامل

AUXIN RESPONSE FACTOR3 Regulates Compound Leaf Patterning by Directly Repressing PALMATE-LIKE PENTAFOLIATA1 Expression in Medicago truncatula

Diverse leaf forms can be seen in nature. In Medicago truncatula, PALM1 encoding a Cys(2)His(2) transcription factor is a key regulator of compound leaf patterning. PALM1 negatively regulates expression of SGL1, a key regulator of lateral leaflet initiation. However, how PALM1 itself is regulated is not yet known. To answer this question, we used promoter sequence analysis, yeast one-hybrid tes...

متن کامل

S-glycoprotein-like protein regulates defense responses in Nicotiana plants against Ralstonia solanacearum.

RsRGA4 (for Ralstonia solanacearum-responsive gene A4) encodes a polypeptide similar to S-locus glycoprotein (SGP) from Brassica rapa and SGP-like proteins from Ipomoea trifida and Medicago truncatula. Therefore, we designated RsRGA4 as NtSGLP (for Nicotiana tabacum SGP-like protein) and NbSGLP (its Nicotiana benthamiana ortholog). NbSGLP is expressed in root, leaf, petal, gynoecium, and stamen...

متن کامل

LeafletAnalyzer, an Automated Software for Quantifying, Comparing and Classifying Blade and Serration Features of Compound Leaves during Development, and among Induced Mutants and Natural Variants in the Legume Medicago truncatula

Diverse leaf forms ranging from simple to compound leaves are found in plants. It is known that the final leaf size and shape vary greatly in response to developmental and environmental changes. However, changes in leaf size and shape have been quantitatively characterized only in a limited number of species. Here, we report development of LeafletAnalyzer, an automated image analysis and classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2011